Effects of additional nonmethane volatile organic compounds, organic nitrates, and direct emissions of oxygenated organic species on global tropospheric chemistry
نویسندگان
چکیده
[1] This work evaluates the sensitivity of tropospheric ozone and its precursors to the representation of nonmethane volatile organic compounds (NMVOCs) and organic nitrates. A global 3-D tropospheric chemistry/transport model (IMPACT) has been exercised initially using the GEOS-Chem chemical reaction mechanism. The model was then extended by adding emissions and photochemical reactions for aromatic and terpenoid hydrocarbons, and by adding explicit representation of hydroxy alkyl nitrates produced from isoprene. Emissions of methanol, phenol, acetic acid and formic acid associated with biomass burning were also added. Results show that O3 increases by 20% in most of the troposphere, peroxyacetyl nitrate (PAN) increases by 30% over much of the troposphere and OH increases by 10%. NOx (NO + NO2) decreases near source regions and increases in remote locations, reflecting increased transport of NOx away from source regions by organic nitrates. The increase in O3 was driven largely by the increased role of PAN as a transporter of NOx and by the rerelease of NOx from isoprene nitrates. The increased PAN production was associated with increases in methyl glyoxal and hydroxyacetone. Comparison with measured values show reasonable agreement for O3 and PAN, but model measurement agreement does not either improve or degrade in the extended model. The extended model shows improved agreement with measurements for methanol, acetic acid and peroxypropional nitrate (PPN). Results from the extended model were consistent with measured alkyl nitrates and glycolaldehyde, but hydroxyacetone and methyl glyoxal were overestimated. The latter suggests that the effect of the isoprene nitrates is somewhat smaller than estimated here. Although the model measurement comparison does not show specific improvements with the extended model, it provides a more complete description of tropospheric chemistry that we believe is important to include.
منابع مشابه
Why are there large differences between models in global budgets of tropospheric ozone?
[1] Global 3-D tropospheric chemistry models in the literature show large differences in global budget terms for tropospheric ozone. The ozone production rate in the troposphere, P(Ox), varies from 2300 to 5300 Tg yr 1 across models describing the present-day atmosphere. The ensemble mean of P(Ox) in models from the post-2000 literature is 35% higher than that compiled in the Intergovernmental ...
متن کاملThe influence of biogenic emissions from Africa on tropical tropospheric ozone during 2006: a global modeling study
We have performed simulations using a 3-D global chemistry-transport model to investigate the influence that biogenic emissions from the African continent exert on the composition of the troposphere in the tropical region. For this purpose we have applied two recently developed biogenic emission inventories provided for use in large-scale global models (Granier et al., 2005; Lathière et al., 20...
متن کاملUrban flux measurements reveal a large pool of oxygenated volatile organic compound emissions
Atmospheric chemistry is fueled by a large annual influx of nonmethane volatile organic compounds (NMVOC). These compounds influence ozone formation, lead to secondary organic aerosol production, and play a significant role for the oxidizing capacity of the atmosphere. The anthropogenic NMVOC budget is considerably uncertain due to the diversity of urban emission sources. Here, we present compr...
متن کاملSimulating the detailed chemical composition of secondary organic aerosol formed on a regional scale during the TORCH 2003 campaign in the southern UK
Following on from the companion study (Johnson et al., 2006), a photochemical trajectory model (PTM) has been used to simulate the chemical composition of organic aerosol for selected events during the 2003 TORCH (Tropospheric Organic Chemistry Experiment) field campaign. The PTM incorporates the speciated emissions of 124 nonmethane anthropogenic volatile organic compounds (VOC) and three repr...
متن کاملManagement of tropospheric ozone by reducing methane emissions.
Background concentrations of tropospheric ozone are increasing and are sensitive to methane emissions, yet methane mitigation is currently considered only for climate change. Methane control is shown here to be viable for ozone management. Identified global abatement measures can reduce approximately 10% of anthropogenic methane emissions at a cost-savings, decreasing surface ozone by 0.4-0.7 p...
متن کامل